国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文學(xué)位 >Analyzing activities and events in video from motion content.
【24h】

Analyzing activities and events in video from motion content.

機(jī)譯:從運(yùn)動內(nèi)容分析視頻中的活動和事件。

獲取原文
獲取原文并翻譯 | 示例

摘要

Object motion in video contains important information for video content analysis especially video event detection. The motion contents in its raw form is real-value multidimensional time series. Processing and analyzing this kind of data is not trivial since most standard machine learning algorithms can only be applied to data in vector space. In this work, we explore the techniques to solve three problems related to motion content in video: object motion estimation, motion representation, and motion analysis to recognize video activities.;We first present our work on object detection and tracking. These algorithms help us to estimate the object motion, which is the input data for motion representation and analysis.;We propose an edit distance based approach to measure the similarity between motion trajectories in its raw form. A stochastic transition model is developed to learn the model parameters from the training data.;We develop a novel trajectory representation framework, "bag of segments," by which trajectories are transformed to a frequency in vector space so that many traditional machine learning algorithms can be directly applied to the motion trajectory data.;We present our work on using the Granger causality test to analyze multiobject interactions from motion. By estimating the causality feature of interactive objects, some important video activities can be rigorously defined and recognized using machine algorithms.;Finally, a correlation based feature weighting algorithm is presented with application to video activity classification.
機(jī)譯:視頻中的對象運(yùn)動包含用于視頻內(nèi)容分析(尤其是視頻事件檢測)的重要信息。原始形式的運(yùn)動內(nèi)容是實(shí)值多維時間序列。由于大多數(shù)標(biāo)準(zhǔn)的機(jī)器學(xué)習(xí)算法只能應(yīng)用于向量空間中的數(shù)據(jù),因此處理和分析此類數(shù)據(jù)并非易事。在這項(xiàng)工作中,我們探索解決與視頻中的運(yùn)動內(nèi)容相關(guān)的三個問題的技術(shù):對象運(yùn)動估計(jì),運(yùn)動表示和識別視頻活動的運(yùn)動分析。;我們首先介紹我們在對象檢測和跟蹤方面的工作。這些算法幫助我們估計(jì)對象運(yùn)動,該對象運(yùn)動是運(yùn)動表示和分析的輸入數(shù)據(jù)。我們提出了一種基于編輯距離的方法,以原始形式測量運(yùn)動軌跡之間的相似性。開發(fā)了一個隨機(jī)過渡模型,以從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)模型參數(shù)。;我們開發(fā)了一種新穎的軌跡表示框架“線段包”,通過該框架將軌跡轉(zhuǎn)換為向量空間中的頻率,因此許多傳統(tǒng)的機(jī)器學(xué)習(xí)算法都可以直接應(yīng)用于運(yùn)動軌跡數(shù)據(jù)。;我們介紹了使用Granger因果關(guān)系檢驗(yàn)分析運(yùn)動中的多對象交互作用的工作。通過估計(jì)交互式對象的因果關(guān)系特征,可以使用機(jī)器算法嚴(yán)格定義和識別一些重要的視頻活動。最后,提出了一種基于相關(guān)性的特征加權(quán)算法,并將其應(yīng)用于視頻活動分類。

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號