国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文學(xué)位 >Exploring and exploiting resonance in coupled and/or nonlinear microelectromechanical oscillators.
【24h】

Exploring and exploiting resonance in coupled and/or nonlinear microelectromechanical oscillators.

機(jī)譯:探索和利用耦合和/或非線性微機(jī)電振蕩器中的共振。

獲取原文
獲取原文并翻譯 | 示例

摘要

Mass sensors utilizing resonant microelectromechanical systems (MEMS) have recently garnered significant interest from the engineering research community. While motivations vary, this interest is generally attributed to the fact that resonant m crosensors offer the potential for increased mass sensitivity, in addition to all of the benefits typically attendant to microelectromechanical devices, namely, minimal power consumption, small size, seamless integration with existing integrated circuit technologies, and comparatively low cost. Pertinent to the present study is the fact that the majority of resonant microsensors utilize linear resonance structures. While this approach offers unquestionable utility, because most uncoupled, linear microsensors feature a single dominant degree-of-freedom and a single functionalized surface, these devices are generally capable of detecting only a single analyte. Likewise, since Lorentzian resonance structures are employed, sensor metrics are often constrained by the devices' scale and difficult to control independently.; The present study seeks to overcome the aforementioned limitations by examining the use of non-traditional microresonator architectures in resonant mass sensing applications. Specifically, the work considers the design, modeling, analysis, and implementation of (i) single input - single output (SISO), multi-analyte sensors based on arrays of coupled microbeam oscillators, (ii) electrostatically-actuated microbeams utilizing purely-parametric excitations, and (iii) resonant microcantilevers utilizing magnetomotive transduction. Each of these systems is believed to be capable of rendering simpler mass sensing systems and/or sensors with improved metrics.; The first portion of the present study considers the design and development of a SISO, resonant mass sensor capable of detecting multiple target analytes. This device, much like its traditional counterparts, employs linear resonance shifts to indicate a detection event. Here, however, a coupled resonator architecture is used, in conjunction with mode localization, to yield a comparatively-simpler, multi-analyte sensor. While the present work details the sensor's development from conception to testing, particular emphasis is place on system modeling, analysis, and design.; The second portion of the work examines the use of electrostatically-actuated microbeam systems with purely-parametric excitations. These devices, which utilize symmetric electrostatic actuation, are of direct interest here, because they, unlike their traditional variable-gap counterparts, feature a number of desirable frequency response characteristics, including nearly-ideal stopband rejection, in addition to high noise robustness and high mass sensitivity. In this investigation, particular emphasis is placed on system modeling, nonlinear analysis, and device design.; The final portion of this dissertation focuses on resonant microcantilevers that utilize electromagnetic actuation and sensing, or so-called magnetomotive transduction. These devices have recently garnered increasing interest due to their scalability and 'self-sensing' capabilities, both of which are highly desirable in resonant mass sensing applications. The first part of this investigation details the modeling, analysis, and predictive design of a representative nonlinear device. This effort is intended to serve as a precursor to the development of self-sensing, nonlinear resonant mass sensors. The latter portion of the investigation examines (analytically and experimentally) the implementation of parametric amplification in a linear, electromagnetically-actuated microbeam system. This low-noise resonance amplification technique should facilitate the development of self-sensing, linear mass sensors.
機(jī)譯:最近,利用共振微機(jī)電系統(tǒng)(MEMS)的質(zhì)量傳感器引起了工程研究界的極大興趣。盡管動機(jī)各不相同,但這種興趣通常歸因于以下事實(shí):諧振微傳感器除了具有微機(jī)電設(shè)備通常具有的所有優(yōu)點(diǎn)(即功耗最小,體積小,與現(xiàn)有產(chǎn)品無縫集成)之外,還具有提高質(zhì)量靈敏度的潛力。集成電路技術(shù),且成本相對較低。與本研究有關(guān)的是大多數(shù)諧振微傳感器利用線性諧振結(jié)構(gòu)的事實(shí)。盡管這種方法無疑具有實(shí)用性,但由于大多數(shù)未耦合的線性微傳感器具有單個主導(dǎo)自由度和單個功能化表面的特征,因此這些設(shè)備通常只能檢測單個分析物。同樣,由于采用了洛倫茲共振結(jié)構(gòu),因此傳感器指標(biāo)常常受到設(shè)備規(guī)模的限制,難以獨(dú)立控制。本研究試圖通過檢查非傳統(tǒng)微諧振器體系結(jié)構(gòu)在共振質(zhì)量傳感應(yīng)用中的使用來克服上述局限性。具體來說,該工作考慮了(i)基于耦合微束振蕩器陣列的單輸入單輸出(SISO)多分析物傳感器的設(shè)計,建模,分析和實(shí)現(xiàn),(ii)利用純參數(shù)的靜電驅(qū)動微束激發(fā);以及(iii)利用磁動轉(zhuǎn)導(dǎo)的共振微懸臂梁。相信這些系統(tǒng)中的每一個都能夠以改進(jìn)的度量來呈現(xiàn)更簡單的質(zhì)量感測系統(tǒng)和/或傳感器。本研究的第一部分考慮了能夠檢測多種目標(biāo)分析物的SISO共振質(zhì)量傳感器的設(shè)計和開發(fā)。與傳統(tǒng)的同類產(chǎn)品一樣,該設(shè)備采用線性共振位移來指示檢測事件。但是,在這里,耦合諧振器架構(gòu)與模式定位結(jié)合使用,以產(chǎn)生一個相對簡單的多分析物傳感器。雖然目前的工作詳細(xì)介紹了傳感器從概念到測試的發(fā)展,但重點(diǎn)特別放在系統(tǒng)建模,分析和設(shè)計上。這項(xiàng)工作的第二部分研究了帶有純參數(shù)激勵的靜電驅(qū)動微束系統(tǒng)的使用。這些利用對稱靜電致動的器件在這里引起了人們的直接關(guān)注,因?yàn)樗鼈兣c傳統(tǒng)的可變間隙器件不同,它們具有許多理想的頻率響應(yīng)特性,除了具有較高的噪聲魯棒性和較高的噪聲抑制能力外,還包括幾乎理想的阻帶抑制性能。質(zhì)量敏感性。在這項(xiàng)調(diào)查中,特別強(qiáng)調(diào)了系統(tǒng)建模,非線性分析和設(shè)備設(shè)計。本論文的最后部分集中在利用電磁致動和感應(yīng)或所謂的磁動換能的共振微懸臂梁上。這些設(shè)備最近因其可擴(kuò)展性和“自感”功能而引起了越來越多的關(guān)注,這兩者在共振質(zhì)量感測應(yīng)用中是非常需要的。本研究的第一部分詳細(xì)介紹了代表性非線性器件的建模,分析和預(yù)測設(shè)計。這項(xiàng)工作旨在作為自感應(yīng)非線性諧振質(zhì)量傳感器發(fā)展的先驅(qū)。研究的后半部分(分析和實(shí)驗(yàn))檢查線性電磁驅(qū)動微束系統(tǒng)中參數(shù)放大的實(shí)現(xiàn)。這種低噪聲共振放大技術(shù)應(yīng)有助于開發(fā)自感應(yīng)線性質(zhì)量傳感器。

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號