国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文學(xué)位 >Sentiment Mining of online political forums.
【24h】

Sentiment Mining of online political forums.

機譯:在線政治論壇的情感挖掘。

獲取原文
獲取原文并翻譯 | 示例

摘要

It has always been important to understand what people are thinking. In today's society, the internet has become increasingly active as a way for users to actively engage in political debates and discuss their political views. Political discussion forums have become a popular place for politically minded individuals to express their views. While political blogs are another popular spot for users to express their political views, well established political forums can have thousands of members and provide a wealth of data to be used for analysis. Sentiment Mining is used today to gather people's opinions in many areas. By using Sentiment Mining on political forums, we could gain a better understanding of how people might vote in upcoming elections, their party affiliations, and other political leanings.;We found that through Sentiment Mining of online political forums, sentiment differed in many areas between forums, while other sentiments were important among both forums. We found out through Sentiment Mining on Republican and Democratic forums, that the Republican leaning forum, "Hannity" contained a high frequency of descriptive terms on terrorism, privacy, and Christmas, while the Democratic Underground forum had high frequencies of terms such as education, health, and Iraq. These terms show us what sentiments are more important to posters from each political forum.;Sentiment Mining will be used to analyze two online political forums to try and find similarities and differences in political opinions of the forum members. The algorithm then can be used on other political forums to predict the political opinions of their forums members as well. The paper will also analyze current political happenings such as how economic crises or war may sway sentiments, and which topics are most important amongst each of the parties' websites. We will then compare various words and phrases of opinions to see which ones had a greater impact on being able to determine the political leaning of the forum.
機譯:了解人們的想法一直很重要。在當(dāng)今社會中,互聯(lián)網(wǎng)已經(jīng)越來越活躍,成為用戶積極參與政治辯論和討論其政治觀點的一種方式。政治討論論壇已成為具有政治頭腦的個人表達意見的熱門場所。政治博客是用戶表達其政治觀點的另一個熱門場所,而完善的政治論壇可以擁有成千上萬的成員,并提供大量數(shù)據(jù)用于分析。如今,情感挖掘已被用于在許多領(lǐng)域收集人們的意見。通過在政治論壇上使用Sentiment Mining,我們可以更好地了解人們?nèi)绾卧诩磳⑴e行的選舉,他們的黨派和其他政治傾向中投票。論壇,而其他觀點在兩個論壇中都很重要。我們在共和黨和民主黨論壇上通過“情感挖掘”發(fā)現(xiàn),共和黨傾向論壇“漢妮蒂”(Hannity)包含了有關(guān)恐怖主義,隱私和圣誕節(jié)的描述性術(shù)語,而民主地下論壇則有諸如教育,健康和伊拉克。這些術(shù)語向我們展示了對于每個政治論壇的發(fā)布者來說,哪些情感更重要。;情感挖掘?qū)⒂糜诜治鰞蓚€在線政治論壇,以嘗試找到論壇成員在政治觀點上的異同。然后,該算法可以在其他政治論壇上使用,以預(yù)測其論壇成員的政治觀點。本文還將分析當(dāng)前的政治事件,例如經(jīng)濟危機或戰(zhàn)爭如何影響人們的情緒,以及在每個政黨網(wǎng)站中哪個主題最重要。然后,我們將比較各種意見的單詞和短語,以查看哪些單詞和短語對能夠確定論壇的政治傾向產(chǎn)生更大的影響。

著錄項

  • 作者

    Stamper, Robert.;

  • 作者單位

    University of Louisville.;

  • 授予單位 University of Louisville.;
  • 學(xué)科 Political Science General.;Computer Science.;Information Science.
  • 學(xué)位 M.S.
  • 年度 2008
  • 頁碼 37 p.
  • 總頁數(shù) 37
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類
  • 關(guān)鍵詞

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號