国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文學(xué)位 >Approximation algorithms for single-sink edge installation problems and other graph problems.
【24h】

Approximation algorithms for single-sink edge installation problems and other graph problems.

機譯:用于單水槽邊緣安裝問題和其他圖形問題的近似算法。

獲取原文
獲取原文并翻譯 | 示例

摘要

Many network design problems require designing networks that obey certain constraints. Minimum spanning tree, Steiner tree, vehicle routing, and facility location problems are examples. The goal is to design networks of minimal cost. In this thesis, we present approximation algorithms for minimum-cost single-sink edge installation problems and related graph problems.; Given an undirected graph G = (V, E), where V is the set of vertices and E is the set of edges, a cost function on the edges, root r ∈ V, capacity constraint k, and a set of demands D ⊆ V, with w(v) denoting the flow that v ∈ D wishes to route to r, the Capacitated Minimum Steiner Tree (CMStT) problem asks for a minimum cost Steiner tree, rooted at r, spanning D such that the sum of the vertex weights in each of the subtrees connected to r is at most k. When D = V, this problem is called the Capacitated Minimum Spanning Tree (CMST) problem. Informally, the problem is that of installing cables of capacity k along the edges of the given graph in order to facilitate simultaneous routing of flows from all the demands to the sink. In this thesis, we first present approximation algorithms for the CMST and the CMStT problems. Next, we present approximation results for the Capacitated Minimum Spanning Network problem, a survivable network variant of the CMST problem, which requires that the flow can be routed to the sink even in case of single node/edge failure.; We then consider the Single-Sink Buy-at-Bulk problem, a generalization of the CMStT problem, in which we are given the option of using l different cables, instead of just one. Each cable has a given capacity and cost per unit length. It is not required that the final network be a tree. We present approximation algorithms for this problem when there is an additional restriction that the flow from a source cannot be bifurcated, and its variant in which the flow is splittable.; Finally, we present approximation results for other graph problems: the k-Traveling Repairmen problem, the Bounded Latency problem, and the Bounded-Degree Minimum Spanning Tree problem.
機譯:許多網(wǎng)絡(luò)設(shè)計問題需要設(shè)計遵守某些約束的網(wǎng)絡(luò)。最小生成樹,斯坦納樹,車輛路線和設(shè)施位置問題就是例子。目標(biāo)是設(shè)計成本最低的網(wǎng)絡(luò)。本文提出了一種針對最小成本的單沉邊緣安裝問題和相關(guān)圖問題的近似算法。給定無向圖G =(V,E),其中V是頂點集合,E是邊集合,邊上的成本函數(shù),根r∈V,容量約束k和一組需求D? V,w(v)表示v∈D希望流向r的流,容量最小斯坦納樹(CMStT)問題要求以r為根,跨度D的最小成本斯坦納樹,使得頂點之和連接到r的每個子樹中的權(quán)重最多為k。當(dāng)D = V時,此問題稱為容量最小生成樹(CMST)問題。非正式地,問題是沿著給定圖的邊緣安裝容量為k的電纜,以便于將流量從所有需求同時路由到接收器。在本文中,我們首先提出了CMST和CMStT問題的近似算法。接下來,我們給出電容最小跨度網(wǎng)絡(luò)問題的近似結(jié)果,該問題是CMST問題的可生存網(wǎng)絡(luò)變體,它要求即使在單節(jié)點/邊緣故障的情況下,也可以將流量路由到接收器。然后,我們考慮“單槽批量購買”問題,這是CMStT問題的一般化,在該問題中,我們可以選擇使用l種不同的電纜,而不僅僅是一種。每條電纜具有給定的容量和每單位長度的成本。不需要最終網(wǎng)絡(luò)是一棵樹。當(dāng)存在一個額外的限制,即來自一個源的流量不能分叉,并且存在其可拆分流量的變體時,我們提出該問題的近似算法。最后,我們給出了其他圖問題的近似結(jié)果:k-旅行修理工問題,有限時延問題和有限度最小生成樹問題。

著錄項

  • 作者

    Jothi, Raja.;

  • 作者單位

    The University of Texas at Dallas.;

  • 授予單位 The University of Texas at Dallas.;
  • 學(xué)科 Computer Science.; Operations Research.
  • 學(xué)位 Ph.D.
  • 年度 2004
  • 頁碼 134 p.
  • 總頁數(shù) 134
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類 自動化技術(shù)、計算機技術(shù);運籌學(xué);
  • 關(guān)鍵詞

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號