国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文學位 >Carbon dioxide sequestration by mineral carbonation of iron-bearing minerals.
【24h】

Carbon dioxide sequestration by mineral carbonation of iron-bearing minerals.

機譯:通過含鐵礦物的礦物碳化來隔離二氧化碳。

獲取原文
獲取原文并翻譯 | 示例

摘要

Carbon dioxide (CO2) is formed when fossil fuels such as oil, gas and coal are burned in power producing plants. CO2 is naturally found in the atmosphere as part of the carbon cycle, however it becomes a primary greenhouse gas when human activities disturb this natural balanced cycle by increasing levels in the atmosphere. In light of this fact, greenhouse gas mitigation strategies have garnered a lot of attention. Carbon capture, utilization and sequestration (CCUS) has emerged as a possible strategy to limit CO2 emissions into the atmosphere. The technology involves capturing CO2 at the point sources, using it for other markets or transporting to geological formations for safe storage. This thesis aims to understand and probe the chemistry of the reactions between CO2 and iron-bearing sediments to ensure secure storage for millennia.;The dissertation work presented here focused on trapping CO2 as a carbonate mineral as a permanent and secure method of CO2 storage. The research also explored the use of iron-bearing minerals found in the geological subsurface as candidates for trapping CO2 and sulfide gas mixtures as siderite (FeCO3) and iron sulfides. Carbon dioxide sequestration via the use of sulfide reductants of the iron oxyhydroxide polymorphs lepidocrocite, goethite and akaganeite with supercritical CO 2 (scCO2) was investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The exposure of the different iron oxyhydroxides to aqueous sulfide in contact with scCO2 at ~70-100 °C resulted in the partial transformation of the minerals to siderite (FeCO3). The order of mineral reactivity with regard to siderite formation in the scCO2/sulfide environment was goethite < lepidocrocite ≤ akaganeite. Overall, the results suggested that the carbonation of lepidocrocite and akaganeite with a CO2 waste stream containing ~1-5% H2S would sequester both the carbon and sulfide efficiently. Hence, it might be possible to develop a process that could be associated with large CO2 point sources in locations without suitable sedimentary strata for subsurface sequestration.;This thesis also investigates the effect of salinity on the reactions between a ferric-bearing oxide phase, aqueous sulfide, and scCO2. ATR-FTIR was again used as an in situ probe to follow product formation in the reaction environment. X-ray diffraction along with Rietveld refinement was used to determine the relative proportion of solid product phases. ATR-FTIR results showed the evolution of siderite (FeCO3) in solutions containing NaCl(aq) concentrations that varied from 0.10 to 4.0 M. The yield of siderite was greatest under solution ionic strength conditions associated with NaCl(aq) concentrations of 0.1-1 M (siderite yield 40% of solid product) and lowest at the highest ionic strength achieved with 4 M NaCl(aq) (20% of solid product). Based partly on thermochemical calculations, it is suggested that a decrease in the concentration of aqueous HCO3- and a corresponding increase in co-ion formation, (i.e., NaHCO3) with increasing NaCl(aq) concentration resulted in the decreasing yield of siderite product. At all the ionic strength conditions used in this study, the most abundant solid phase product present after reaction was hematite (Fe2O3) and pyrite (FeS 2). The former product likely formed via dissolution/reprecipitation reactions, whereas the reductive dissolution of ferric iron by the aqueous sulfide likely preceded the formation of pyrite. These in situ experiments allowed the ability to follow the reaction chemistry between the iron oxyhr(oxide), aqueous sulfide and CO2 under conditions relevant to subsurface conditions. Furthermore, very important results from these small-scale experiments show this process can be a potentially superior and operable method for mitigating CO2 emissions.
機譯:在發(fā)電廠燃燒石油,天然氣和煤炭等化石燃料時會形成二氧化碳。作為碳循環(huán)的一部分,自然會在大氣中發(fā)現(xiàn)二氧化碳,但是當人類活動通過增加大氣中的碳水平而擾亂這種自然平衡的循環(huán)時,二氧化碳便成為主要的溫室氣體。有鑒于此,減少溫室氣體的策略已經引起了廣泛關注。碳捕集,利用和封存(CCUS)已成為限制二氧化碳向大氣中排放的一種可行策略。該技術涉及在點源處捕獲CO2,將其用于其他市場或運輸到地質構造以進行安全存儲。本文旨在了解和探究二氧化碳與含鐵沉積物之間的化學反應,以確保千年的安全儲存。論文的主要工作是將二氧化碳作為一種碳酸鹽礦物,作為一種永久,安全的儲存方法進行研究。該研究還探索了利用在地質地下發(fā)現(xiàn)的含鐵礦物來捕獲二氧化碳和硫化物氣體混合物(如菱鐵礦(FeCO3)和硫化鐵)的方法。使用原位衰減全反射傅里葉變換紅外光譜(ATR-FTIR),X射線衍射(XRD)研究了使用超臨界CO 2(scCO2)的羥基氧化鐵多晶型硅鐵礦,針鐵礦和赤鐵礦的硫化物還原劑隔離二氧化碳的方法。 )和透射電子顯微鏡(TEM)。在?70-100°C下,不同的羥基氧化鐵暴露于與scCO2接觸的硫化氫水溶液中,導致礦物部分轉化為菱鐵礦(FeCO3)。在scCO2 /硫化物環(huán)境中,與菱鐵礦形成有關的礦物反應性順序為針鐵礦<纖鐵礦≤赤鐵礦。總體而言,結果表明,用含約1-5%H2S的CO2廢料將碳纖鐵礦和高鐵碳酸鹽碳酸化會有效地隔離碳和硫化物。因此,可能有可能開發(fā)出一種方法,該方法可能與在沒有合適的沉積地層的情況下進行地下封存的地點中的大型CO2點源相關聯(lián)。;本論文還研究了鹽度對含鐵氧化物相與水相之間反應的影響。硫化物和scCO2。 ATR-FTIR再次用作原位探針,以追蹤反應環(huán)境中產物的形成。 X射線衍射與Rietveld精制一起用于確定固體產物相的相對比例。 ATR-FTIR結果表明,在NaCl(aq)濃度從0.10到4.0 M的溶液中,菱鐵礦(FeCO3)的演化。在溶液離子強度條件下,NaCl(aq)濃度為0.1-1時,菱鐵礦的產量最大。 M(菱鐵礦產率為固體產物的40%),在4 M NaCl(aq)(固體產物為20%)達到的最高離子強度下最低。部分基于熱化學計算,表明隨著NaCl(aq)濃度的增加,HCO3-水溶液的濃度降低,并且共離子形成(即NaHCO3)相應增加,導致菱鐵礦產品的收率降低。在本研究中使用的所有離子強度條件下,反應后存在的最豐富的固相產物是赤鐵礦(Fe2O3)和黃鐵礦(FeS 2)。前一種產物可能是通過溶解/再沉淀反應形成的,而硫化鐵水溶液對三價鐵的還原性溶解可能是在黃鐵礦形成之前。這些原位實驗使人們能夠在與地下條件有關的條件下跟蹤氧化鐵,氧化物水溶液,硫化物和二氧化碳之間的反應化學。此外,這些小規(guī)模實驗的非常重要的結果表明,該過程可能是減輕CO2排放的潛在優(yōu)越且可操作的方法。

著錄項

  • 作者

    Lammers, Kristin D.;

  • 作者單位

    Temple University.;

  • 授予單位 Temple University.;
  • 學科 Analytical chemistry.;Geochemistry.
  • 學位 Ph.D.
  • 年度 2015
  • 頁碼 231 p.
  • 總頁數 231
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類
  • 關鍵詞

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權所有
  • 客服微信

  • 服務號