国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文學(xué)位 >Eigenvalues and eigenfunctions of Schrodinger operators: Inverse spectral theory; and the zeros of eigenfunctions.
【24h】

Eigenvalues and eigenfunctions of Schrodinger operators: Inverse spectral theory; and the zeros of eigenfunctions.

機譯:Schrodinger算符的特征值和特征函數(shù):逆譜理論和本征函數(shù)的零

獲取原文
獲取原文并翻譯 | 示例

摘要

This dissertation contains two disjoint parts:;Part I. In the first part (which is from [H1]) we find some explicit formulas for the semi-classical wave invariants at the bottom of the well of a Schrodinger operator. As an application, we prove similar inverse spectral results, obtained by Guillemin and Uribe in [GU], using fewer symmetry assumptions. We also show that in dimension 1, no symmetry assumption is needed to recover the Taylor coefficients of V( x).;Part II. In the second part (which is from [H2]) we study the semi-classical distribution of the complex zeros of the eigenfunctions of the 1D Schrodinger operators for the class of real polynomial potentials of even degree, with fixed energy level, E. We show that as hn → 0 the zeros tend to concentrate on the union of some level curves reals(S(zm, z)) = cm where S( zm, z) = zmz Vt-E dt is the complex action, and zm is a turning point. We also calculate these curves for some symmetric and non-symmetric one-well and double-well potentials.
機譯:本論文包含兩個不相交的部分:第一部分。在第一部分(來自[H1]),我們在Schrodinger算子的井底找到了一些半經(jīng)典波動不變量的顯式。作為應(yīng)用,我們證明了Guillemin和Uribe在[GU]中使用較少的對稱性假設(shè)獲得了相似的逆譜結(jié)果。我們還表明,在維度1中,不需要對稱假設(shè)即可恢復(fù)V(x)的泰勒系數(shù)。在第二部分(來自[H2])中,對于固定能級E的偶數(shù)次實多項式勢,我們研究了一維Schrodinger算子本征函數(shù)的復(fù)零的半經(jīng)典分布。表明當hn→0時,零趨向于集中在某些水平曲線的并集上reals(S(zm,z))= cm其中S(zm,z)= zmz Vt-E dt是復(fù)數(shù)作用,而zm是轉(zhuǎn)折點。我們還計算了一些對稱和非對稱的單井和雙井電勢的這些曲線。

著錄項

  • 作者

    Hezari, Hamid.;

  • 作者單位

    The Johns Hopkins University.;

  • 授予單位 The Johns Hopkins University.;
  • 學(xué)科 Mathematics.
  • 學(xué)位 Ph.D.
  • 年度 2009
  • 頁碼 98 p.
  • 總頁數(shù) 98
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類 數(shù)學(xué);
  • 關(guān)鍵詞

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號