国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁(yè)> 美國(guó)衛(wèi)生研究院文獻(xiàn)>Biophysical Journal >Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges.
【2h】

Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges.

機(jī)譯:膜-膜粘附和分離的詳細(xì)機(jī)制。一分子跨橋的連續(xù)體。

代理獲取
本網(wǎng)站僅為用戶提供外文OA文獻(xiàn)查詢和代理獲取服務(wù),本網(wǎng)站沒(méi)有原文。下單后我們將采用程序或人工為您竭誠(chéng)獲取高質(zhì)量的原文,但由于OA文獻(xiàn)來(lái)源多樣且變更頻繁,仍可能出現(xiàn)獲取不到、文獻(xiàn)不完整或與標(biāo)題不符等情況,如果獲取不到我們將提供退款服務(wù)。請(qǐng)知悉。

摘要

The mechanics of membrane-membrane adhesion are developed for the approximation that the molecular cross-bridging forces are continuously distributed as a normal stress (force per unit area). The significance of the analysis is that the finite range of the cross-bridging forces and the microscopic contact angle are not assumed negligible. Since the cross-bridging and adhesion forces are finite range interactions, there are two membrane regions: a free zone where the membranes are not subject to attractive forces; and an adherent zone where the membranes are held together by attractive stresses. The membrane is treated as an elastic continuum. The approach is to analyze the mechanics for each zone separately and then to require continuity of the solutions at the interface between the zones. Final solution yields the membrane contour and stresses proximal to and within the contact zone as well as the microscopic contact angle at the edge of the contact zone. It is demonstrated that the classical Young equation is consistent with this model. The results show that the microscopic contact angle becomes appreciable when the strength of adhesion is large or the length of the cross-bridge is large; however, the microscopic contact angle approaches zero as the membrane elastic stiffness increases. The solution predicts the width of the contact zone over which molecular bonds are stretched. It is this boundary region where increased biochemical activity is expected. In the classical model presented here, the level of tension necessary to oppose spreading of the contact is equal to the minimal level of tension required to separate the adherent membranes. This behavior is in contrast with that derived for the case of discrete molecular cross-bridges where the possibility of different levels of tension associated with adhesion and separation is introduced. The discrete cross-bridge case is the subject of a companion paper.
機(jī)譯:開(kāi)發(fā)膜-膜粘附的機(jī)理是為了近似地將分子交叉橋連力作為法向應(yīng)力(每單位面積的力)連續(xù)分布。該分析的意義在于,不能認(rèn)為交叉橋力的有限范圍和微觀接觸角是可以忽略的。由于交叉橋聯(lián)力和粘附力是有限范圍的相互作用,因此存在兩個(gè)膜區(qū)域:一個(gè)自由區(qū)域,在該區(qū)域中,該膜不受吸引力;以及通過(guò)吸引應(yīng)力將膜固定在一起的粘附區(qū)。該膜被視為彈性連續(xù)體。該方法是分別分析每個(gè)區(qū)域的力學(xué),然后要求區(qū)域之間接口處的解決方案具有連續(xù)性。最終的解決方案產(chǎn)生了膜的輪廓,并在接觸區(qū)附近和內(nèi)部產(chǎn)生了應(yīng)力,并在接觸區(qū)的邊緣產(chǎn)生了微觀接觸角。證明了經(jīng)典的楊氏方程與此模型是一致的。結(jié)果表明,當(dāng)粘合強(qiáng)度大或橫橋長(zhǎng)度大時(shí),微觀接觸角變得可觀。然而,隨著膜的彈性剛度增加,微觀接觸角接近于零。該解決方案預(yù)測(cè)了分子鍵在其上延伸的接觸區(qū)的寬度。正是這個(gè)邊界區(qū)域有望增加生化活性。在此處介紹的經(jīng)典模型中,抵抗接觸擴(kuò)散所需的張力級(jí)別等于分離粘附膜所需的最小張力級(jí)別。該行為與離散分子交叉橋的情況相反,在離散分子交叉橋的情況下,引入了與粘附和分離相關(guān)的不同水平張力的可能性。離散的跨橋案例是隨行論文的主題。

著錄項(xiàng)

  • 期刊名稱(chēng) Biophysical Journal
  • 作者

    E. A. Evans;

  • 作者單位
  • 年(卷),期 1985(48),1
  • 年度 1985
  • 頁(yè)碼 175–183
  • 總頁(yè)數(shù) 9
  • 原文格式 PDF
  • 正文語(yǔ)種
  • 中圖分類(lèi) 生物物理學(xué);
  • 關(guān)鍵詞

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專(zhuān)利
代理獲取

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)