国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 美國衛(wèi)生研究院文獻(xiàn)>American Journal of Epidemiology >Covariate Selection in High-Dimensional Propensity Score Analyses of Treatment Effects in Small Samples
【2h】

Covariate Selection in High-Dimensional Propensity Score Analyses of Treatment Effects in Small Samples

機(jī)譯:高維度傾向得分分析中小樣本治療效果的協(xié)變量選擇

代理獲取
本網(wǎng)站僅為用戶提供外文OA文獻(xiàn)查詢和代理獲取服務(wù),本網(wǎng)站沒有原文。下單后我們將采用程序或人工為您竭誠獲取高質(zhì)量的原文,但由于OA文獻(xiàn)來源多樣且變更頻繁,仍可能出現(xiàn)獲取不到、文獻(xiàn)不完整或與標(biāo)題不符等情況,如果獲取不到我們將提供退款服務(wù)。請(qǐng)知悉。

摘要

To reduce bias by residual confounding in nonrandomized database studies, the high-dimensional propensity score (hd-PS) algorithm selects and adjusts for previously unmeasured confounders. The authors evaluated whether hd-PS maintains its capabilities in small cohorts that have few exposed patients or few outcome events. In 4 North American pharmacoepidemiologic cohort studies between 1995 and 2005, the authors repeatedly sampled the data to yield increasingly smaller cohorts. They identified potential confounders in each sample and estimated both an hd-PS that included 0–500 covariates and treatment effects adjusted by decile of hd-PS. For sensitivity analyses, they altered the variable selection process to use zero-cell correction and, separately, to use only the variables’ exposure association. With >50 exposed patients with an outcome event, hd-PS-adjusted point estimates in the small cohorts were similar to the full-cohort values. With 25–50 exposed events, both sensitivity analyses yielded estimates closer to those obtained in the full data set. Point estimates generally did not change as compared with the full data set when selecting >300 covariates for the hd-PS. In these data, using zero-cell correction or exposure-based covariate selection allowed hd-PS to function robustly with few events. hd-PS is a flexible analytical tool for nonrandomized research across a range of study sizes and event frequencies.
機(jī)譯:為了減少非隨機(jī)數(shù)據(jù)庫研究中殘留混雜造成的偏見,高維傾向評(píng)分(hd-PS)算法選擇并調(diào)整了先前無法測量的混雜因素。作者評(píng)估了hd-PS是否在很少有暴露患者或很少發(fā)生預(yù)后事件的小型隊(duì)列中保持其功能。在1995年至2005年間進(jìn)行的4項(xiàng)北美藥物流行病學(xué)隊(duì)列研究中,作者反復(fù)采樣數(shù)據(jù)以得出越來越小的隊(duì)列。他們?cè)诿總€(gè)樣本中確定了潛在的混雜因素,并估計(jì)了包含0-500個(gè)協(xié)變量的hd-PS以及通過hd-PS的十分位數(shù)調(diào)整的治療效果。為了進(jìn)行敏感性分析,他們更改了變量選擇過程,以使用零像元校正,并分別使用變量的暴露關(guān)聯(lián)。對(duì)于> 50名暴露于預(yù)后事件的患者,小隊(duì)列中的hd-PS調(diào)整后的點(diǎn)估計(jì)與全隊(duì)列值相似。對(duì)于25–50個(gè)暴露事件,兩種敏感性分析得出的估計(jì)值都接近完整數(shù)據(jù)集中的估計(jì)值。當(dāng)為hd-PS選擇> 300個(gè)協(xié)變量時(shí),點(diǎn)估計(jì)與完整數(shù)據(jù)集相比通常不會(huì)發(fā)生變化。在這些數(shù)據(jù)中,使用零像元校正或基于曝光的協(xié)變量選擇使hd-PS能夠在很少事件的情況下穩(wěn)定運(yùn)行。 hd-PS是一種靈活的分析工具,適用于各種研究規(guī)模和事件頻率的非隨機(jī)研究。

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
代理獲取

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)