国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>Algorithmica >Efficient Algorithms for k-Terminal Cuts on Planar Graphs
【24h】

Efficient Algorithms for k-Terminal Cuts on Planar Graphs

機譯:平面圖上k末端切割的高效算法

獲取原文
獲取原文并翻譯 | 示例

摘要

The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n~2log n logm), O(m~2 n~(1.5)log~2 n + kn)} time algorithm with a (2–2/k)-approximation ratio (clearly, m ≤ k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(nk~3 +(n logn)k~2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(kn~2logn) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m ≤ k).
機譯:最小的k端子切割問題具有相當(dāng)大的理論意義,并且出現(xiàn)在幾個應(yīng)用領(lǐng)域,例如并行和分布式計算,VLSI電路設(shè)計和聯(lián)網(wǎng)。在本文中,我們針對n個頂點無向加權(quán)平面圖G給出了針對該問題的兩種新的逼近算法和精確算法。對于k個終端覆蓋G的m> 1個面的邊界的情況,我們給出min { O(n?2log n logm),O(m?2 n?(1.5)log?2 n + kn)}時間算法,其近似比為(2–2 / k)(m≤k)。對于所有k個終端都被G的一個面的邊界覆蓋的情況,我們給出O(nk?3 +(n logn)k?2)時間精確算法,或者如果k = 3,則給出線性時間精確算法,用于計算最佳的k端切割。我們的算法基于有趣的觀察,并在將其應(yīng)用于平面圖時對其進(jìn)行了改進(jìn)。據(jù)我們所知,以前沒有專門解決平面圖中k端割問題的近似算法。 Dahlhaus等人的(2–2 / k)逼近算法。 (對于一般圖形)應(yīng)用于平面圖形需要O(kn?2logn)時間。我們對平面圖的近似算法比Dahlhaus等人的算法運行得更快。至少乘以O(shè)(k / logm)因子(m≤k)。

著錄項

  • 來源
    《Algorithmica》 |2004年第2期|p. 299-316|共18頁
  • 作者

    Danny Z. Chen; Xiaodong Wu;

  • 作者單位

    Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;

    Department of Computer Science, University of Texas – Pan American, 1201 West University Drive, Edinburg, TX 78539, USA;

  • 收錄信息 美國《科學(xué)引文索引》(SCI);美國《工程索引》(EI);
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類 計算技術(shù)、計算機技術(shù);
  • 關(guān)鍵詞

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號