国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Pseudo-randomness and complexity of binary sequences generated by the chaotic system
【24h】

Pseudo-randomness and complexity of binary sequences generated by the chaotic system

機譯:混沌系統(tǒng)生成的二進制序列的偽隨機性和復(fù)雜性

獲取原文
獲取原文并翻譯 | 示例

摘要

The pseudo-randomness and complexity of binary sequences generated by chaotic systems are investigated in this paper. These chaotic binary sequences can have the same pseudo-randomness and complexity as the chaotic real sequences that are transformed into them by the use of Kohda's quantification algorithm. The statistical test, correlation function, spectral analysis, Lempel-Ziv complexity and approximate entropy are regarded as quan-titative measures to characterize the pseudo-randomness and complexity of these binary sequences. The experimental results show the finite binary sequences generated by the chaotic systems have good properties with the pseudo-randomness and complexity of sequences. However, the pseudo-randomness and complexity of sequence are not added with the increase of sequence length. On the contrary, they steadily decrease with the increase of sequence length in the criterion of approximate entropy and statistical test. The constraint of computational precision is a fundamental reason resulting in the prob-lem. So only the shorter binary sequences generated by the chaotic systems are suitable for modern cryptography without other way of adding sequence complexity in the existing computer system.
機譯:研究了混沌系統(tǒng)生成的二進制序列的偽隨機性和復(fù)雜性。這些混沌二進制序列可以具有與使用Kohda量化算法轉(zhuǎn)換成混沌真實序列相同的偽隨機性和復(fù)雜性。統(tǒng)計檢驗,相關(guān)函數(shù),頻譜分析,Lempel-Ziv復(fù)雜度和近似熵被視為量化這些二進制序列的偽隨機性和復(fù)雜性的定量方法。實驗結(jié)果表明,混沌系統(tǒng)生成的有限二進制序列具有良好的性質(zhì),具有偽隨機性和序列復(fù)雜性。但是,隨著序列長度的增加,不會增加序列的偽隨機性和復(fù)雜性。相反,在近似熵和統(tǒng)計學(xué)檢驗的標(biāo)準(zhǔn)中,它們隨著序列長度的增加而穩(wěn)定地減少。計算精度的限制是導(dǎo)致出現(xiàn)問題的根本原因。因此,只有混沌系統(tǒng)生成的較短的二進制序列才適合現(xiàn)代密碼學(xué),而無需采用其他方法來增加現(xiàn)有計算機系統(tǒng)中的序列復(fù)雜度。

著錄項

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號