国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Seismic Fault Detection Using Convolutional Neural Networks Trained on Synthetic Poststacked Amplitude Maps
【24h】

Seismic Fault Detection Using Convolutional Neural Networks Trained on Synthetic Poststacked Amplitude Maps

機(jī)譯:使用在合成后疊加振幅圖上訓(xùn)練的卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行地震故障檢測(cè)

獲取原文
獲取原文并翻譯 | 示例

摘要

Fault detection is a crucial step in reservoir characterization. Despite the many tools developed in the past decades, automation of this task remains a challenge. We investigate the application of convolutional neural networks (CNNs) to seismic fault detection. CNN is a deep learning method growing in interest in the computer vision community, due to its high performances in a great variety of object detection tasks. One of the constraints of this method is the need to provide a massive number of interpreted data, a requirement particularly difficult to attend in the seismic area. To this end, we built a synthetic data set with simple fault geometries. The input of our network is the seismic amplitude only; the method does not require computing any seismic attribute. We apply a strategy of patch classification along the images, which requires a simple postprocess to extract the exact fault location. Our network shows good results on synthetic data and encouraging results when tested on regions of a real section of The Netherland offshore F3 block in the North Sea.
機(jī)譯:故障檢測(cè)是儲(chǔ)層表征中的關(guān)鍵步驟。盡管在過去的幾十年中開發(fā)了許多工具,但這項(xiàng)任務(wù)的自動(dòng)化仍然是一個(gè)挑戰(zhàn)。我們研究了卷積神經(jīng)網(wǎng)絡(luò)(CNN)在地震故障檢測(cè)中的應(yīng)用。 CNN是一種深度學(xué)習(xí)方法,由于其在各種對(duì)象檢測(cè)任務(wù)中的高性能而在計(jì)算機(jī)視覺界引起了越來越多的興趣。該方法的限制之一是需要提供大量的解釋數(shù)據(jù),這一要求在地震地區(qū)尤為困難。為此,我們建立了具有簡單故障幾何形狀的綜合數(shù)據(jù)集。我們網(wǎng)絡(luò)的輸入僅是地震振幅。該方法不需要計(jì)算任何地震屬性。我們對(duì)圖像應(yīng)用補(bǔ)丁分類策略,這需要簡單的后處理來提取確切的故障位置。當(dāng)在北海的荷蘭海上F3區(qū)塊的實(shí)際部分區(qū)域進(jìn)行測(cè)試時(shí),我們的網(wǎng)絡(luò)在綜合數(shù)據(jù)上顯示出良好的結(jié)果,并獲得令人鼓舞的結(jié)果。

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)