国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>Microprocessors and microsystems >Integrated moving target defense and control reconfiguration for securing Cyber-Physical systems
【24h】

Integrated moving target defense and control reconfiguration for securing Cyber-Physical systems

機譯:集成的移動目標(biāo)防御和控制重新配置,可確保網(wǎng)絡(luò)物理系統(tǒng)的安全

獲取原文
獲取原文并翻譯 | 示例

摘要

With the increasingly connected nature of Cyber-Physical Systems (CPS), new attack vectors are emerging that were previously not considered in the design process. Specifically, autonomous vehicles are one of the most at risk CPS applications, including challenges such as a large amount of legacy software, non-trusted third party applications, and remote communication interfaces. With zero day vulnerabilities constantly being discovered, an attacker can exploit such vulnerabilities to inject malicious code or even leverage existing legitimate code to take over the cyber part of a CPS. Due to the tightly coupled nature of CPS, this can lead to altering physical behavior in an undesirable or devastating manner. Therefore, it is no longer effective to reactively harden systems, but a more proactive approach must be taken. Moving target defense (MTD) techniques such as instruction set randomization (ISR), and address space randomization (ASR) have been shown to be effective against code injection and code reuse attacks. However, these MID techniques can result in control system crashing which is unacceptable in CPS applications since such crashing may cause catastrophic consequences. Therefore, it is crucial for MTD techniques to be complemented by control reconfiguration to maintain system availability in the event of a cyberattack. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating moving target defense techniques, as well as detection, and recovery mechanisms to ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection as well as code reuse attacks, and reconfiguring fast enough to ensure the safety and stability of autonomous vehicle controllers are maintained. By using MTD such as ISR, and ASR, our approach provides the advantage of preventing attackers from obtaining the reconnaissance knowledge necessary to perform code injection and code reuse attacks, making sure attackers can't find vulnerabilities in the first place. Our system implementation includes a combination of runtime MTD utilizing AES 256 ISR and fine grained ASR, as well as control management that utilizes attack detection, and reconfiguration capabilities. We evaluate the developed security architecture in an autonomous vehicle case study, utilizing a custom developed hardware-in-the-loop testbed. (C) 2019 Elsevier B.V. All rights reserved.
機譯:隨著網(wǎng)絡(luò)物理系統(tǒng)(CPS)的聯(lián)系性質(zhì)日益緊密,出現(xiàn)了新的攻擊媒介,這些攻擊媒介以前在設(shè)計過程中并未考慮。具體而言,自動駕駛汽車是CPS風(fēng)險最高的應(yīng)用之一,其中包括大量遺留軟件,不受信任的第三方應(yīng)用程序和遠(yuǎn)程通信接口等挑戰(zhàn)。隨著零日漏洞的不斷發(fā)現(xiàn),攻擊者可以利用這些漏洞來注入惡意代碼,甚至利用現(xiàn)有的合法代碼來接管CPS的網(wǎng)絡(luò)部分。由于CPS的緊密耦合特性,這可能導(dǎo)致以不希望的或破壞性的方式改變身體行為。因此,對系統(tǒng)進行反應(yīng)性強化不再有效,而必須采取更主動的方法。諸如指令集隨機化(ISR)和地址空間隨機化(ASR)之類的移動目標(biāo)防御(MTD)技術(shù)已被證明可有效抵御代碼注入和代碼重用攻擊。但是,這些MID技術(shù)可能導(dǎo)致控制系統(tǒng)崩潰,這在CPS應(yīng)用程序中是不可接受的,因為這種崩潰可能會導(dǎo)致災(zāi)難性的后果。因此,至關(guān)重要的是,MTD技術(shù)必須通過控制重新配置來補充,以在發(fā)生網(wǎng)絡(luò)攻擊時維持系統(tǒng)可用性。本文通過集成移動目標(biāo)防御技術(shù)以及檢測和恢復(fù)機制來確保安全,可靠和可預(yù)測的系統(tǒng)操作,來解決遭受攻擊的CPS的系統(tǒng)和安全性問題。具體來說,我們考慮了檢測代碼注入以及代碼重用攻擊,并進行足夠快速的重新配置以確保維持自動駕駛控制器的安全性和穩(wěn)定性的問題。通過使用諸如ISR和ASR之類的MTD,我們的方法具有防止攻擊者獲得執(zhí)行代碼注入和代碼重用攻擊所必需的偵察知識的優(yōu)勢,從而確保攻擊者首先無法找到漏洞。我們的系統(tǒng)實現(xiàn)包括結(jié)合使用AES 256 ISR和細(xì)粒度ASR的運行時MTD,以及利用攻擊檢測和重新配置功能的控制管理。我們利用自定義開發(fā)的硬件在環(huán)測試平臺在自動駕駛汽車案例研究中評估開發(fā)的安全體系結(jié)構(gòu)。 (C)2019 Elsevier B.V.保留所有權(quán)利。

著錄項

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號