国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>Pattern recognition letters >A new algorithm for initial cluster centers in k-means algorithm
【24h】

A new algorithm for initial cluster centers in k-means algorithm

機譯:k-均值算法中初始聚類中心的新算法

獲取原文
獲取原文并翻譯 | 示例

摘要

Clustering is one of the widely used knowledge discovery techniques to reveal structures in a dataset that can be extremely useful to the analyst. In iterative clustering algorithms the procedure adopted for choosing initial cluster centers is extremely important as it has a direct impact on the formation of final clusters. Since clusters are separated groups in a feature space, it is desirable to select initial centers which are well separated. In this paper, we have proposed an algorithm to compute initial cluster centers for k-means algorithm. The algorithm is applied to several different datasets in different dimension for illustrative purposes. It is observed that the newly proposed algorithm has good performance to obtain the initial cluster centers for the fc-means algorithm.
機譯:聚類是廣泛使用的知識發(fā)現(xiàn)技術(shù)之一,可以揭示數(shù)據(jù)集中的結(jié)構(gòu),這對分析人員非常有用。在迭代聚類算法中,選擇初始聚類中心所采用的過程非常重要,因為它直接影響最終聚類的形成。由于聚類是在特征空間中分離的組,因此希望選擇分離良好的初始中心。在本文中,我們提出了一種計算k均值算法的初始聚類中心的算法。出于說明目的,將該算法應(yīng)用于不同維度的幾個不同數(shù)據(jù)集??梢钥闯?,新提出的算法在獲得fc-means算法的初始聚類中心方面具有良好的性能。

著錄項

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號