国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁(yè)> 美國(guó)政府科技報(bào)告 >Combat Identification Modeling Using Neural Networks Techniques
【24h】

Combat Identification Modeling Using Neural Networks Techniques

機(jī)譯:基于神經(jīng)網(wǎng)絡(luò)技術(shù)的作戰(zhàn)識(shí)別建模

獲取原文

摘要

The purposes of this research were: (1) validating Kim's (2007) simulation method by applying analytic methods and (2) comparing the two different Robust Parameter Design methods with three measures of performance (label accuracy for enemy, friendly, and clutter). Considering the features of CID, input variables were defined as two controllable (threshold combination of detector and classifier) and three uncontrollable (map size, number of enemies and friendly). The first set of experiments considers Kim's method using analytical methods. In order to create response variables, Kim's method uses Monte Carlo simulation. The output results showed no difference between simulation and the analytic method. The second set of experiments compared the measures of performance between a standard RPD used by Kim and a new method using Artificial Neural Networks (ANNs). To find optimal combinations of detection and classification thresholds, Kim's model uses regression with a combined array design, whereas the ANNs method uses ANN with a crossed array design. In the case of label accuracy for enemy, Kim's solution showed the higher expected value, however it also showed a higher variance. Additionally, the model's residuals were higher for Kim's model.

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)