国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 美國政府科技報(bào)告 >Investigation of forced unsteady separated flows using velocity-vorticity form of Navier-Stokes equations
【24h】

Investigation of forced unsteady separated flows using velocity-vorticity form of Navier-Stokes equations

機(jī)譯:利用Navier-stokes方程的速度 - 渦度形式研究強(qiáng)迫非定常分離流動(dòng)

獲取原文

摘要

The phenomenon of forced unsteady separation and eruption of boundary-layer vorticity is a highly-complex, high-Reynolds number flow phenomenon, which abruptly leads to the formation of a dynamic stall vortex as demonstrated earlier by the authors for a NACA 0015 airfoil undergoing constant rate pitch-up motion. This, as well as the results of other researchers, have convincingly demonstrated a complex vortical structure within the state of unsteady separation prior to the evolution of dynamic stall. This phenomenon of vortex eruption, although observed in studying dynamic stall phenomena, is also associated with transition from laminar to turbulence flow and its generic nature has been stressed by many researchers including the present investigators. An unsteady Navier-Stokes (NS) analysis is developed for arbitrarily maneuvering bodies using velocity-vorticity variables; this formulation is nearly form-invariant under a generalized non-inertial coordinate transformation. A fully-implicit uniformly second-order accurate method is used, with the nonlinear convective terms approximated using a biased third-order upwind differencing scheme to be able to simulate higher-Re flows. No explicit artificial dissipation is added. The numerical method is fully vectorized and currently achieves a computational index of 7 micro-seconds per time step per mesh point, using a single processor on a CRAY Y-MP. The simulation results show that the energetic free shear from the leading edge is responsible for the wall viscous layer to abruptly erupt near the center of the counterclockwise rotating eddy in the unsteady boundary layer. Primary, secondary, tertiary and quaternary vortices have been observed before the dynamic stall vortex evolves and gathers its maximum strength. This study will discuss the simulation results of Reynolds number up to Re = 45,000 and will also discuss the efforts of initial acceleration in a specific maneuver, on the evolution of the stall vortex.

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)