国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文學位 >Model based prediction of physiology of G. sulfurreducens by flux balance and thermodynamics based metabolic flux analysis approaches.
【24h】

Model based prediction of physiology of G. sulfurreducens by flux balance and thermodynamics based metabolic flux analysis approaches.

機譯:通過通量平衡和基于熱力學的代謝通量分析方法,基于模型的硫還原菌的生理預測。

獲取原文
獲取原文并翻譯 | 示例

摘要

The development of genome scale metabolic models have been aided by the increasing availability of genome sequences of microorganisms such as Geobacter sulfurreducens, involved in environmentally relevant processes such as the in-situ bioremediation of U(VI). Since microbial activities are the major driving forces for geochemical changes in the sub-surface, understanding of microbial behavior under a given set of conditions can help predict the likely outcome of potential subsurface bioremediation strategies. Hence, a model based lookup table was created to capture the variation in physiology of G. sulfurreducens in response to environmental perturbations. Thermodynamically feasible flux distributions were generated by incorporating thermodynamic constraints in the model. These constraints together with the mass balance constraints formed the thermodynamics based metabolic flux analysis model (TMFA). Metabolomics experiments were performed to determine the concentration of intracellular metabolites. These concentrations were posed as constraints in the TMFA model to improve the model accuracy.
機譯:基因組規(guī)模代謝模型的發(fā)展已經(jīng)得到了微生物(如減少硫桿菌的基因組)基因組序列可用性的提高,這些微生物參與了與環(huán)境有關(guān)的過程,例如U(VI)的原位生物修復。由于微生物活動是地下地球化學變化的主要驅(qū)動力,因此了解給定條件下的微生物行為可以幫助預測潛在的地下生物修復策略的可能結(jié)果。因此,創(chuàng)建了一個基于模型的查找表,以捕獲響應環(huán)境擾動的硫還原菌的生理變化。通過在模型中納入熱力學約束條件來生成熱力學可行的通量分布。這些約束與質(zhì)量平衡約束一起形成了基于熱力學的代謝通量分析模型(TMFA)。進行了代謝組學實驗以確定細胞內(nèi)代謝物的濃度。這些濃度被認為是TMFA模型中的約束條件,以提高模型的準確性。

著錄項

  • 作者

    Govindarajan, Srinath Garg.;

  • 作者單位

    University of Toronto (Canada).;

  • 授予單位 University of Toronto (Canada).;
  • 學科 Biology Physiology.
  • 學位 M.A.Sc.
  • 年度 2009
  • 頁碼 104 p.
  • 總頁數(shù) 104
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類
  • 關(guān)鍵詞

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務號