国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 美國衛(wèi)生研究院文獻>other >Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method
【2h】

Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method

機譯:蒙特卡洛·貝葉斯(Monte Carlo Bayesian)使用高分辨率云觀測結(jié)果推斷亞網(wǎng)格柱水分變化的統(tǒng)計模型。第1部分:方法

代理獲取
本網(wǎng)站僅為用戶提供外文OA文獻查詢和代理獲取服務,本網(wǎng)站沒有原文。下單后我們將采用程序或人工為您竭誠獲取高質(zhì)量的原文,但由于OA文獻來源多樣且變更頻繁,仍可能出現(xiàn)獲取不到、文獻不完整或與標題不符等情況,如果獲取不到我們將提供退款服務。請知悉。

摘要

A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.
機譯:提出了一種使用高分辨率衛(wèi)星云數(shù)據(jù)來約束亞網(wǎng)格柱濕度變化統(tǒng)計模型的方法。該方法可用于大規(guī)模模型參數(shù)估計或云數(shù)據(jù)同化。網(wǎng)格列模型包括假定的概率密度函數(shù)(PDF)層內(nèi)水平可變性和基于copula的層間相關模型。當前研究中使用的可觀測值是中等分辨率成像光譜儀(MODIS)的云頂壓力,亮度溫度和云的光學厚度,但是該方法應該可以擴展,以指導少量通道的陰天輻射同化。該算法是利用馬爾可夫鏈蒙特卡洛(MCMC)方法進行貝葉斯推斷的一種形式,用于表征后驗分布。在背景狀態(tài)清晰但存在多云觀察的情況下,此方法特別有用。在傳統(tǒng)的線性化數(shù)據(jù)同化方法中,過飽和的背景無法通過任何無限的平衡擾動產(chǎn)生云,但是蒙特卡洛方法不是基于梯度的,而是允許跳入非零云概率區(qū)域。當前的研究使用傾斜三角形分布來獲取層水分。本文還討論了Metropolis和MCMC的多次嘗試Metropolis版本。

著錄項

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
代理獲取

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務號