国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>Algorithmica >Multicuts in Planar and Bounded-Genus Graphs with Bounded Number of Terminals
【24h】

Multicuts in Planar and Bounded-Genus Graphs with Bounded Number of Terminals

機譯:端子數(shù)有界的平面圖和有界屬圖中的多切口

獲取原文
獲取原文并翻譯 | 示例

摘要

Given an undirected, edge-weighted graph G together with pairs of vertices, called pairs of terminals, the minimum multicut problem asks for a minimum-weight set of edges such that, after deleting these edges, the two terminals of each pair belong to different connected components of the graph. Relying on topological techniques, we provide a polynomial-time algorithm for this problem in the case where G is embedded on a fixed surface of genus g (e.g., when G is planar) and has a fixed number t of terminals. The running time is a polynomial of degree in the input size. In the planar case, our result corrects an error in an extended abstract by Bentz (Int. Workshop on Parameterized and Exact Computation, 109-119, 2012). The minimum multicut problem is also a generalization of the multiway cut problem, a.k.a. multiterminal cut problem; even for this special case, no dedicated algorithm was known for graphs embedded on surfaces.
機譯:給定一個無向的,邊緣加權的圖G和一對頂點(稱為端子對),最小多割問題要求邊緣的最小權重集合,使得在刪除這些邊緣之后,每對端子的兩個端子屬于不同的圖的連接組件。依靠拓撲技術,當G嵌入在g屬的固定表面上(例如,當G為平面時)并且具有固定數(shù)量的t端子時,我們針對此問題提供了多項式時間算法。運行時間是輸入大小的度的多項式。在平面情況下,我們的結果糾正了Bentz擴展的摘要中的錯誤(Int。Workshop on Parameterized and Exact Computation,109-119,2012年)。最小多割問題也是多向割問題(也稱為多端子割問題)的推廣;即使對于這種特殊情況,也沒有專門的算法可用于嵌入在曲面上的圖形。

著錄項

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權所有
  • 客服微信

  • 服務號