国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>International Journal of Electrical and Computer Engineering >Parametric Comparison of K-means and Adaptive K-means Clustering Performance on Different Images
【24h】

Parametric Comparison of K-means and Adaptive K-means Clustering Performance on Different Images

機譯:不同圖像上K均值和自適應(yīng)K均值聚類性能的參數(shù)比較

獲取原文

摘要

Image segmentation takes a major role to analyzing the area of interest in image processing. Many researchers have used different types of techniques to analyzing the image. One of the widely used techniques is K-means clustering. In this paper we use two algorithms K-means and the advance of K-means is called as adaptive K-means clustering. Both the algorithms are using in different types of image and got a successful result. By comparing the Time period, PSNR and RMSE value from the result of both algorithms we prove that the Adaptive K-means clustering algorithm gives a best result as compard to K-means clustering in image segmentation.
機譯:圖像分割在分析圖像處理中的關(guān)注區(qū)域方面起著重要作用。許多研究人員已使用不同類型的技術(shù)來分析圖像。廣泛使用的技術(shù)之一是K-均值聚類。在本文中,我們使用兩種算法K均值,K均值的改進(jìn)被稱為自適應(yīng)K均值聚類。兩種算法都在不同類型的圖像中使用,并獲得了成功的結(jié)果。通過比較兩種算法的時間周期,PSNR和RMSE值,我們證明,與圖像分割中的K-means聚類相比,自適應(yīng)K-means聚類算法可提供最佳結(jié)果。

著錄項

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號