国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁> 外文期刊>Evolutionary computation >An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm
【24h】

An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm

機譯:使用混合進(jìn)化-局部搜索算法的雙級多目標(biāo)規(guī)劃問題的高效,精確解法

獲取原文
獲取原文并翻譯 | 示例

摘要

Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
機譯:雙層優(yōu)化問題涉及兩個優(yōu)化任務(wù)(上層和下層),其中每個可行的上層解決方案都必須對應(yīng)于下層優(yōu)化問題的最優(yōu)解決方案。這些問題通常出現(xiàn)在許多實際的問題解決任務(wù)中,包括最佳控制,過程優(yōu)化,游戲策略開發(fā),運輸問題等。但是,它們通常通過使用近似求解程序來替換較低級別的優(yōu)化任務(wù)而轉(zhuǎn)換為單級優(yōu)化問題。盡管存在許多涉及單目標(biāo)雙層編程問題的理論,數(shù)值和進(jìn)化優(yōu)化研究,但很少有研究關(guān)注雙層編程問題中每個級別的多個相互沖突的目標(biāo)。在本文中,我們解決了與解決多目標(biāo)雙層編程問題相關(guān)的某些復(fù)雜問題,提出了具有挑戰(zhàn)性的測試問題,并提出了一種可行且基于混合進(jìn)化和局部搜索的算法作為解決方法?;旌戏椒ǖ男阅軆?yōu)于許多現(xiàn)有方法,并且可以擴(kuò)展到本研究中使用的多達(dá)40個變量的困難測試問題。總體大小和終止標(biāo)準(zhǔn)是自適應(yīng)的,因此用戶不需要提供其他參數(shù)。研究表明,與通常的解決方案相比,進(jìn)化算法在解決此類具有實際重要性的困難問題上具有明顯的優(yōu)勢,而通常的解決方案是通過計算上昂貴的嵌套過程進(jìn)行的。該研究提出了與多目標(biāo)雙層編程有關(guān)的許多問題,希望該研究將激發(fā)EMO和其他研究人員更多地關(guān)注這一重要且困難的問題解決活動。

著錄項

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號