国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

您現(xiàn)在的位置: 首頁(yè)> 研究主題> IDS

IDS

IDS的相關(guān)文獻(xiàn)在1988年到2023年內(nèi)共計(jì)741篇,主要集中在自動(dòng)化技術(shù)、計(jì)算機(jī)技術(shù)、無(wú)線電電子學(xué)、電信技術(shù)、經(jīng)濟(jì)計(jì)劃與管理 等領(lǐng)域,其中期刊論文683篇、會(huì)議論文15篇、專利文獻(xiàn)43篇;相關(guān)期刊333種,包括信息安全與通信保密、信息網(wǎng)絡(luò)安全、電腦知識(shí)與技術(shù)等; 相關(guān)會(huì)議14種,包括中國(guó)電機(jī)工程學(xué)會(huì)農(nóng)村電氣化分會(huì)自動(dòng)化專委會(huì)2008年年會(huì)暨學(xué)術(shù)研討會(huì)、第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議、第二屆江蘇計(jì)算機(jī)大會(huì)等;IDS的相關(guān)文獻(xiàn)由1000位作者貢獻(xiàn),包括江晉、胡昌振、趙旭等。

IDS—發(fā)文量

期刊論文>

論文:683 占比:92.17%

會(huì)議論文>

論文:15 占比:2.02%

專利文獻(xiàn)>

論文:43 占比:5.80%

總計(jì):741篇

IDS—發(fā)文趨勢(shì)圖

IDS

-研究學(xué)者

  • 江晉
  • 胡昌振
  • 趙旭
  • 劉壽強(qiáng)
  • 張杰
  • 牛承珍
  • 王衛(wèi)
  • 蘇憲利
  • 厲劍
  • 孫紅娜
  • 期刊論文
  • 會(huì)議論文
  • 專利文獻(xiàn)

搜索

排序:

年份

    • 周宏林; 蒲曉珉; 李勇; 趙志海; 李融; 楊志偉; 劉迎; 潘軼凡
    • 摘要: 全球主要國(guó)家積極開(kāi)展工業(yè)數(shù)據(jù)空間研究的背景下,本文首先介紹了工業(yè)數(shù)據(jù)空間的概念內(nèi)涵和4個(gè)典型應(yīng)用場(chǎng)景,其次基于應(yīng)用和需求,介紹了工業(yè)數(shù)據(jù)空間的整體架構(gòu),然后從業(yè)務(wù)、數(shù)據(jù)與服務(wù)、軟件及安全等技術(shù)層面闡述了工業(yè)數(shù)據(jù)空間的參考架構(gòu)模型,最后基于東方電氣集團(tuán)內(nèi)部數(shù)據(jù)模型傳輸?shù)膱?chǎng)景,搭建了測(cè)試床,驗(yàn)證了系統(tǒng)部署的可行性。
    • 東方電氣評(píng)論編輯部
    • 摘要: 尊敬的各位讀者:《東方電氣評(píng)論》第1期第1頁(yè)文章標(biāo)題《某燃料工業(yè)數(shù)據(jù)空間(IDS)技術(shù)概述及其測(cè)試床部署實(shí)踐》應(yīng)為《工業(yè)數(shù)據(jù)空間(IDS)技術(shù)概述及其測(cè)試床部署實(shí)踐》,特此更正,深表歉意!謝謝大家對(duì)《東方電氣評(píng)論》的關(guān)注與支持!
    • Ali Altalbe; Faris Kateb
    • 摘要: Purpose-Virtually unlimited amounts of data collection by cybersecurity systems put people at risk of having their privacy violated.Social networks like Facebook on the Internet provide an overplus of knowledge concerning their users.Although users relish exchanging data online,only some data are meant to be interpreted by those who see value in it.It is now essential for online social network(OSN)to regulate the privacy of their users on the Internet.This paper aims to propose an efficient privacy violation detection model(EPVDM)for OSN.Design/methodology/approach-In recent months,the prominent position of both industry and academia has been dominated by privateness,its breaches and strategies to dodge privacy violations.Corporations around the world have become aware of the effects of violating privacy and its effect on them and other stakeholders.Once privacy violations are detected,they must be reported to those affected and it’s supposed to be mandatory to make them to take the next action.Although there are different approaches to detecting breaches of privacy,most strategies do not have a functioning tool that can show the values of its subject heading.An EPVDM for Facebook,based on a deep neural network,is proposed in this research paper.Findings-The main aim of EPVDM is to identify and avoid potential privacy breaches on Facebook in the future.Experimental analyses in comparison with major intrusion detection system(IDS)to detect privacy violation show that the proposed methodology is robust,precise and scalable.The chances of breaches or possibilities of privacy violations can be identified very accurately.Originality/value-All the resultant is compared with well popular methodologies like adaboost(AB),decision tree(DT),linear regression(LR),random forest(RF)and support vector machine(SVM).It’s been identified from the analysis that the proposed model outperformed the existing techniques in terms of accuracy(94%),precision(99.1%),recall(92.43%),f-score(95.43%)and violation detection rate(>98.5%).
    • Mohd Anul Haq; Mohd Abdul Rahim Khan; Talal AL-Harbi
    • 摘要: Intrusion Detection System(IDS)plays a crucial role in detecting and identifying the DoS and DDoS type of attacks on IoT devices.However,anomaly-based techniques do not provide acceptable accuracy for efficacious intrusion detection.Also,we found many difficulty levels when applying IDS to IoT devices for identifying attempted attacks.Given this background,we designed a solution to detect intrusions using the Convolutional Neural Network(CNN)for Enhanced Data rates for GSM Evolution(EDGE)Computing.We created two separate categories to handle the attack and non-attack events in the system.The findings of this study indicate that this approach was significantly effective.We attempted both multiclass and binary classification.In the case of binary,we clustered all malicious traffic data in a single class.Also,we developed 13 layers of Sequential 1-D CNN for IDS detection and assessed them on the public dataset NSL-KDD.Principal Component Analysis(PCA)was implemented to decrease the size of the feature vector based on feature extraction and engineering.The approach proposed in the current investigation obtained accuracies of 99.34%and 99.13%for binary and multiclass classification,respectively,for the NSL-KDD dataset.The experimental outcomes showed that the proposed Principal Component-based Convolution Neural Network(PCCNN)approach achieved greater precision based on deep learning and has potential use in modern intrusion detection for IoT systems.
    • Tahani Alatawi; Ahamed Aljuhani
    • 摘要: The rapid development of the Internet of Things(IoT)in the industrial domain has led to the new term the Industrial Internet of Things(IIoT).The IIoT includes several devices,applications,and services that connect the physical and virtual space in order to provide smart,cost-effective,and scalable systems.Although the IIoT has been deployed and integrated into a wide range of industrial control systems,preserving security and privacy of such a technology remains a big challenge.An anomaly-based Intrusion Detection System(IDS)can be an effective security solution for maintaining the confidentiality,integrity,and availability of data transmitted in IIoT environments.In this paper,we propose an intelligent anomalybased IDS framework in the context of fog-to-things communications to decentralize the cloud-based security solution into a distributed architecture(fog nodes)near the edge of the data source.The anomaly detection system utilizes minimum redundancy maximum relevance and principal component analysis as the featured engineering methods to select the most important features,reduce the data dimensionality,and improve detection performance.In the classification stage,anomaly-based ensemble learning techniques such as bagging,LPBoost,RUSBoost,and Adaboost models are implemented to determine whether a given flow of traffic is normal or malicious.To validate the effectiveness and robustness of our proposed model,we evaluate our anomaly detection approach on a new driven IIoT dataset called XIIoTID,which includes new IIoT protocols,various cyberattack scenarios,and different attack protocols.The experimental results demonstrated that our proposed anomaly detection method achieved a higher accuracy rate of 99.91%and a reduced false alarm rate of 0.1%compared to other recently proposed techniques.
    • Mahmoud Ragab; Ali Altalbe
    • 摘要: Due to the drastic increase in the number of critical infrastructures like nuclear plants,industrial control systems(ICS),transportation,it becomes highly vulnerable to several attacks.They become the major targets of cyberattacks due to the increase in number of interconnections with other networks.Several research works have focused on the design of intrusion detection systems(IDS)using machine learning(ML)and deep learning(DL)models.At the same time,Blockchain(BC)technology can be applied to improve the security level.In order to resolve the security issues that exist in the critical infrastructures and ICS,this study designs a novel BC with deep learning empowered cyber-attack detection(BDLE-CAD)in critical infrastructures and ICS.The proposed BDLE-CAD technique aims to identify the existence of intrusions in the network.In addition,the presented enhanced chimp optimization based feature selection(ECOA-FS)technique is applied for the selection of optimal subset of features.Moreover,the optimal deep neural network(DNN)with search and rescue(SAR)optimizer is applied for the detection and classification of intrusions.Furthermore,a BC enabled integrity checking scheme(BEICS)has been presented to defend against the misrouting attacks.The experimental result analysis of the BDLE-CAD technique takes place and the results are inspected under varying aspects.The simulation analysis pointed out the supremacy of the BDLE-CAD technique over the recent state of art techniques with the accuy of 92.63%.
    • 張克柱
    • 摘要: 隨著互聯(lián)網(wǎng)技術(shù)應(yīng)用的快速發(fā)展,人們對(duì)網(wǎng)絡(luò)信息依賴程度越來(lái)越高,信息安全顯得尤為重要,通過(guò)對(duì)常見(jiàn)的網(wǎng)絡(luò)安全防護(hù)技術(shù)的分析與研究,提出基于LCS算法的網(wǎng)絡(luò)攻擊行為分析與防護(hù)技術(shù),并搭建了蜜罐系統(tǒng)進(jìn)行實(shí)驗(yàn)與測(cè)試,實(shí)現(xiàn)了對(duì)黑客攻擊行為進(jìn)行監(jiān)控與分析的功能,使網(wǎng)絡(luò)安全性能得到較大的提升。
    • 戴丹青; 孫麗; 楊志高
    • 摘要: 2022年9月5日四川省甘孜州瀘定縣發(fā)生M_(W)6.6地震,利用國(guó)家烈度速報(bào)與預(yù)警工程項(xiàng)目建成的基本站強(qiáng)震動(dòng)數(shù)據(jù),使用迭代反褶積和疊加法(IDS)進(jìn)行破裂過(guò)程反演。反演所得破裂模型顯示,破裂面呈NNW—SSE走向,破裂持續(xù)時(shí)間為15 s,分為4個(gè)階段:首個(gè)階段發(fā)生在震后3 s,破裂朝著斷層面上傾方向以及SE側(cè)傳播;第二階段為震后6—9 s,破裂繼續(xù)向SE側(cè)傳播并在震中SE側(cè)10 km處迅速加劇,此時(shí)破裂滑動(dòng)速率達(dá)到峰值;第三階段在震后9—12 s,破裂能量繼續(xù)在SE側(cè)釋放,破裂滑動(dòng)速率逐漸減小,破裂靜態(tài)滑動(dòng)累積量達(dá)到峰值并趨于穩(wěn)定;第四階段在震后12—15 s,破裂能量基本釋放完畢,破裂結(jié)束。整個(gè)破裂由震中向SE方向延伸,由深部向淺部擴(kuò)展。最大破裂點(diǎn)位于震中SE向10 km附近地下5 km處,最大滑動(dòng)量為0.8 m,破裂可能出露地表。
    • 張周晶; 申玲鈺
    • 摘要: 工業(yè)互聯(lián)網(wǎng)發(fā)展的過(guò)程中,針對(duì)工業(yè)協(xié)議的指令級(jí)IDS需求正在迅速增長(zhǎng),IEC104作為國(guó)家基礎(chǔ)設(shè)施通信的基礎(chǔ)工業(yè)協(xié)議是當(dāng)前網(wǎng)絡(luò)中監(jiān)測(cè)、審計(jì)的重點(diǎn)關(guān)注協(xié)議.針對(duì)該需求,將IEC104的解析分析、監(jiān)測(cè)告警及日志輸出以插件模式在已有開(kāi)源框架suricata中設(shè)計(jì)、開(kāi)發(fā)及實(shí)現(xiàn),滿足當(dāng)前系統(tǒng)需求.
    • 張?jiān)?
    • 摘要: 精益六西格瑪(LSS)是精益生產(chǎn)和六西格瑪管理的結(jié)合,通過(guò)整合吸收IDS和6兩種模式的優(yōu)點(diǎn),達(dá)到最佳的管理效果.項(xiàng)目計(jì)劃管理一直是管理學(xué)中不可缺少的環(huán)節(jié).將LSS的理念融入到貼合實(shí)際的項(xiàng)目管理計(jì)劃中,提高了企業(yè)管理力度,減少資源浪費(fèi),行之有效的管理提高了企業(yè)的利潤(rùn),開(kāi)拓了企業(yè)的發(fā)展空間.我國(guó)是實(shí)行計(jì)劃經(jīng)濟(jì)的社會(huì)主義國(guó)家,計(jì)劃管理在整個(gè)經(jīng)濟(jì)管理中居于主導(dǎo)地位.文中通過(guò)對(duì)LSS的分析研究,提出了將LSS的理論運(yùn)用到企業(yè)項(xiàng)目計(jì)劃管理中的一種管理模式,為企業(yè)提升了經(jīng)濟(jì)效益節(jié)約了成本.
  • 查看更多

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)