国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁(yè)> 外文期刊>IOSR journal of computer engineering >Reduce the False Positive and False Negative from Real Traffic with Intrusion Detection in Zigbee Wireless Networks
【24h】

Reduce the False Positive and False Negative from Real Traffic with Intrusion Detection in Zigbee Wireless Networks

機(jī)譯:通過(guò)Zigbee無(wú)線網(wǎng)絡(luò)中的入侵檢測(cè)減少實(shí)際流量中的誤報(bào)率和誤報(bào)率

獲取原文
獲取原文并翻譯 | 示例

摘要

Denial-of-Service attack in particular is a threat to zigbee wireless networks. It is an attack in which the primary goal is to deny the legitimate users access to the resources. A node is prevented from receiving and sending data packets to its destinations. Typically the traffic through the network is heterogeneous and it flows from multiple utilities and applications Considering todays threats in network there is yet not a single solution to solve all the issues because the traditional methods of port-based and payload-based with machine learning algorithm suffers from dynamic ports and encrypted application. Many international network equipment manufactures like cisco, juniper also working to reduce these issues in the hardware side. Here this paper presents a new approach considering the idea based on SOTC. This method adapts the current approaches with new idea based on service-oriented traffic classification (SOTC) and it can be used as an efficient alternate to existing methods to reduce the false positive and false negative traffic and to reduce computation and memory requirements. By evaluating the results on real traffic it confirm that this method is effective in improving the accuracy of traffic classification considerably, and promise to suits for a large number of applications. Finally, it is also possible to adopt a service database built offline, possibly provided by a third party and modeled after the signature database of antivirus programs, which in term reduce the work of training procedure and over fitting of parameters in case of parameteric classifier of supervised traffic classification.
機(jī)譯:拒絕服務(wù)攻擊尤其是對(duì)zigbee無(wú)線網(wǎng)絡(luò)的威脅。這是主要目的是拒絕合法用戶訪問(wèn)資源的攻擊。阻止節(jié)點(diǎn)接收數(shù)據(jù)包并將其發(fā)送到其目的地。通常,通過(guò)網(wǎng)絡(luò)的流量是異構(gòu)的,并且來(lái)自多個(gè)公用事業(yè)和應(yīng)用程序,因此考慮到當(dāng)今網(wǎng)絡(luò)中的威脅,目前還沒(méi)有一個(gè)單一的解決方案可以解決所有問(wèn)題,因?yàn)閭鹘y(tǒng)的基于端口和基于有效負(fù)載的機(jī)器學(xué)習(xí)算法會(huì)受到影響。從動(dòng)態(tài)端口和加密的應(yīng)用程序。許多國(guó)際網(wǎng)絡(luò)設(shè)備制造商(如cisco,瞻博網(wǎng)絡(luò))也在努力減少硬件方面的這些問(wèn)題。在這里,本文提出了一種基于SOTC的新方法。該方法基于面向服務(wù)的流量分類(lèi)(SOTC),將當(dāng)前方法與新思想相適應(yīng),并且可以用作現(xiàn)有方法的有效替代方案,以減少誤報(bào)和誤報(bào)流量并減少計(jì)算和內(nèi)存需求。通過(guò)評(píng)估實(shí)際流量的結(jié)果,可以確認(rèn)該方法可有效提高流量分類(lèi)的準(zhǔn)確性,并有望適合大量應(yīng)用。最后,也有可能采用離線構(gòu)建的服務(wù)數(shù)據(jù)庫(kù),該服務(wù)數(shù)據(jù)庫(kù)可能由第三方提供,并以防病毒程序的簽名數(shù)據(jù)庫(kù)為模型,從而減少了訓(xùn)練過(guò)程的工作,并且在使用參數(shù)分類(lèi)器時(shí)減少了參數(shù)的擬合監(jiān)督交通分類(lèi)。

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專(zhuān)利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)